North Penn School District

Elementary Math Parent Letter
Grade 4

Unit 3 - Chapter 6: Fraction Equivalence and Comparison

Examples for each lesson:

Lesson 6.1

Equivalent Fractions

Write two fractions that are equivalent to $\frac{2}{6}$.
Step 1 Make a model to represent $\frac{2}{6}$.

The rectangle is divided into 6 equal parts, with 2 parts shaded.
Step 2 Divide the rectangle from Step 1 in half.

The rectangle is now divided into 12 equal parts, with 4 parts shaded.
The model shows the fraction $\frac{4}{12}$. So, $\frac{2}{6}$ and $\frac{4}{12}$ are equivalent.
Step 3 Draw the same rectangle as in Step 1, but with only
3 equal parts. Keep the same amount of the rectangle shaded.

The rectangle is now divided into 3 equal parts, with 1 part shaded.
The model shows the fraction $\frac{1}{3}$. So, $\frac{2}{6}$ and $\frac{1}{3}$ are equivalent.

Lesson 6.2

Generate Equivalent Fractions

Write an equivalent fraction for $\frac{4}{5}$.

Step 1 Choose a whole number, like 2.

Step 2 Create a fraction using 2 as the numerator and denominator: $\frac{2}{2}$.
This fraction is equal to 1 . You can multiply a number by 1 without changing the value of the number.

Step 3 Multiply $\frac{4}{5}$ by $\frac{2}{2}: \frac{4 \times 2}{5 \times 2}=\frac{8}{10}$.
So, $\frac{4}{5}$ and $\frac{8}{10}$ are equivalent.
Write another equivalent fraction for $\frac{4}{5}$.
Step 1 Choose a different whole number, like 20.
Step 2 Create a fraction using 20 as the numerator and denominator: $\frac{20}{20}$
Step 3 Multiply $\frac{4}{5}$ by $\frac{20}{20}: \frac{4 \times 20}{5 \times 20}=\frac{80}{100}$.
So, $\frac{4}{5}$ and $\frac{80}{100}$ are equivalent.

More information on this strategy is available on Animated Math Model \#23.

Lesson 6.3

Simplest Form

A fraction is in simplest form when 1 is the only factor that the
numerator and denominator have in common.
Tell whether the fraction $\frac{7}{8}$ is in simplest form.
Look for common factors in the numerator and the denominator.
Step 1 The numerator of $\frac{7}{8}$ is 7 . List all the factors of 7. $1 \times 7=7$ The factors of 7 are 1 and 7. Step 2 The denominator of $\frac{7}{8}$ is 8. List all the factors of 8. $1 \times 8=8$ $2 \times 4=8$ Step 3 denominator of $\frac{7}{8}$ have any common factors greater than 1. The factors of 8 are $1,2,4$, and 8.
So, $\frac{7}{8}$ is in simplest form.

Lesson 6.4

Common Denominators

A common denominator is a common multiple of the denominators of two or more fractions.	
Write $\frac{2}{3}$ and $\frac{3}{4}$ as a pair of fractions with common denominators.	
Step 1 Identify the denominators of $\frac{2}{3}$ and $\frac{3}{4}$.	$\frac{2}{3}$ and $\frac{3}{4}$ The denominators are 3 and 4 .
Step 2 List multiples of 3 and 4. Circle common multiples.	$\begin{aligned} & 3: 3,6,9,12,15, \underline{18} \\ & 4: 4,8,12,16, \underline{20} \end{aligned}$ 12 is a common multiple of 3 and 4 .
Step 3 Rewrite $\frac{2}{3}$ as a fraction with a denominator of 12.	$\frac{2}{3}=\frac{2 \times 4}{3 \times 4}=\frac{8}{12}$
Step 4 Rewrite $\frac{3}{4}$ as a fraction with a denominator of 12.	$\frac{3}{4}=\frac{3 \times 3}{4 \times \underline{3}}=\frac{9}{12}$
So, you can rewrite $\frac{2}{3}$ and $\frac{3}{4}$ as $\frac{8}{12}$ and $\frac{9}{12}$.	

Lesson 6.5

Problem Solving • Find Equivalent Fractions

Kyle's mom bought bunches of balloons for a family party.
Each bunch has 4 balloons, and $\frac{1}{4}$ of the balloons are blue.
If Kyle's mom bought 5 bunches of balloons, how many
balloons did she buy? How many of the balloons are blue?

Read the Problem						
What do I need to find? I need to find how many balloons Kyle's mom bought and how many of the balloons are blue.	What information do I need to use? Each bunch has 1 out of 4 balloons that are blue, and there are 5 bunches.		How will I use the information? I will make a table to find the total number balloons Kyle's mom bought and the fraction of balloons that are blue.			
Solve the Problem						
I can make a table.						
Number of Bunches		1	2	3	4	5
Total Number of Blue Balloons Total Number of Balloons		4	$\frac{2}{8}$	$\frac{3}{12}$	$\frac{4}{16}$	$\frac{5}{20}$

Kyle's mom bought 20 balloons. 5 of the balloons are blue.

More information on this strategy is available on Animated Math Model \#23.

Lesson 6.6

Compare Fractions Using Benchmarks

A benchmark is a known size or amount that helps you understand a different size or amount. You can use $\frac{1}{2}$ as a benchmark.
Sara reads for $\frac{3}{6}$ hour every day after school. Connor reads for
$\frac{2}{3}$ hour. Who reads for a longer amount of time?
Compare the fractions. $\frac{3}{6} \bigcirc \frac{2}{3}$
Step 1 Divide one circle into 6 equal parts.
Divide another circle into 3 equal parts.
Step 2 Shade $\frac{3}{6}$ of the first circle. How many parts will you shade? 3 parts
Step 3 Shade $\frac{2}{3}$ of the second circle. How many parts will you shade? 2 parts

Step 4 Compare the shaded parts of each circle. Half of Sara's circle is shaded. More than half
 of Connor's circle is shaded.
$\frac{3}{6}$ is less than $\frac{2}{3} \cdot \frac{3}{6}<\frac{2}{3}$
So, Connor reads for a longer amount of time.

More information on this strategy is available on Animated Math Model \#25.

Lesson 6.7

Compare Fractions

Theo filled a beaker $\frac{2}{4}$ full with water. Angelica filled a beaker $\frac{3}{8}$ full with water. Whose beaker has more water?
Compare $\frac{2}{4}$ and $\frac{3}{8}$.
Step 1 Divide one beaker into 4 equal parts. Divide another beaker into 8 equal parts.

Step 2 Shade $\frac{2}{4}$ of the first beaker.
Step 3 Shade $\frac{3}{8}$ of the second beaker.
Step 4 Compare the shaded parts of each beaker. Half of Theo's beaker is shaded. Less than half of Angelica's beaker is shaded.

So, Theo's beaker has more water.

Lesson 6.8

Compare and Order Fractions

Write $\frac{3}{8}, \frac{1}{4}$, and $\frac{1}{2}$ in order from least to greatest.	
Step 1 Identify a common denominator.	Multiples of 8:8,16, 24 Multiples of 4: 4,8. 16 , Multiples of 2: 2, 4, 6,8) Use 8 as a common denominator.
Step 2 Use the common denominator to write equivalent fractions.	$\begin{aligned} & \frac{3}{8} \\ & \frac{1}{4}=\frac{1 \times 2}{4 \times 2}=\frac{2}{8} \\ & \frac{1}{2}=\frac{1 \times 4}{2 \times 4}=\frac{4}{8} \end{aligned}$
Step 3 Compare the numerators.	$2<3<4$
Step 4 Order the fractions from least to greatest, using < or > symbols. So, $\frac{1}{4}<\frac{3}{8}<\frac{1}{2}$.	$\frac{2}{8}<\frac{3}{8}<\frac{4}{8}$

More information on this strategy is available on Animated Math Model \#26.

Vocabulary

Benchmark - a known size or amount that helps you understand a different size or amount
Common denominator - a common multiple of two or more denominators
Equivalent fractions - two or more fractions that name the same amount
Simplest form - A fraction is in its simplest form if the numerator and denominator have only 1 as a common factor

